Discovery of a Previously Unrecognized Ribonuclease from Escherichia coli That Hydrolyzes 5'-Phosphorylated Fragments of RNA.
نویسندگان
چکیده
TrpH or YciV (locus tag b1266) from Escherichia coli is annotated as a protein of unknown function that belongs to the polymerase and histidinol phosphatase (PHP) family of proteins in the UniProt and NCBI databases. Enzymes from the PHP family have been shown to hydrolyze organophosphoesters using divalent metal ion cofactors at the active site. We found that TrpH is capable of hydrolyzing the 3'-phosphate from 3',5'-bis-phosphonucleotides. The enzyme will also sequentially hydrolyze 5'-phosphomononucleotides from 5'-phosphorylated RNA and DNA oligonucleotides, with no specificity toward the identity of the nucleotide base. The enzyme will not hydrolyze RNA or DNA oligonucleotides that are unphosphorylated at the 5'-end of the substrate, but it makes no difference whether the 3'-end of the oligonucleotide is phosphorylated. These results are consistent with the sequential hydrolysis of 5'-phosphorylated mononucleotides from oligonucleotides in the 5' → 3' direction. The catalytic efficiencies for hydrolysis of 3',5'-pAp, p(Ap)A, p(Ap)4A, and p(dAp)4dA were determined to be 1.8 × 10(5), 9.0 × 10(4), 4.6 × 10(4), and 2.9 × 10(3) M(-1) s(-1), respectively. TrpH was found to be more efficient at hydrolyzing RNA oligonucleotides than DNA oligonucleotides. This enzyme can also hydrolyze annealed DNA duplexes, albeit at a catalytic efficiency approximately 10-fold lower than that of the corresponding single-stranded oligonucleotides. TrpH is the first enzyme from E. coli that has been found to possess 5' → 3' exoribonuclease activity. We propose to name this enzyme RNase AM.
منابع مشابه
Construction of a Nanobodies Phage Display Library From an Escherichia coli Immunized Dromedary
Background: Diarrhea caused by Escherichia coli is a major cause of morbidity and mortality in young animals. Few treatment options are available, mainly antibiotic therapy increasingly limited by resistance to commonly used drugs.Objectives: The aim of this work was to develop immunotherapy based on the use of camel VHH antibody fragments, or nanobodies,...
متن کاملJunction ribonuclease: a ribonuclease HII orthologue from Thermus thermophilus HB8 prefers the RNA-DNA junction to the RNA/DNA heteroduplex.
The genome of an extremely thermophilic bacterium, Thermus thermophilus HB8, contains a single ORF (open reading frame) encoding an RNase-HII-like sequence. Despite the presence of significant amino acid sequence identities with RNase (ribonuclease) HII enzymes, the ORF TTHA0198 could not suppress the temperature-sensitive growth defect of an RNase-H-deficient Escherichia coli mutant and the pu...
متن کاملAn experimentally-derived model for the secondary structure of the 16S ribosomal RNA from Escherichia coli.
Ribonucleoprotein fragments are isolated by mild ribonuclease digestion of E. coli 30S ribosomal subunits, and are deproteinized and subjected to a second partial digestion. Base-pairing between the resulting small RNA fragments is investigated using the two-dimensional gel electrophoresis procedure already reported (see Ref. 1). The interactions thus found are incorporated into a secondary str...
متن کاملRedesignation of the RNase D activity associated with retroviral reverse transcriptase as RNase H.
In the presence of Mn2+, reverse transcriptase of both human immunodeficiency virus and murine leukemia virus hydrolyzes duplex RNA. However, designating this novel activity RNase D conflicts with Escherichia coli RNase D, which participates in tRNA processing. On the basis of its location in the RNase H domain, we propose that this novel retroviral activity be redesignated RNase H*.
متن کاملCleavage efficiencies of model substrates for ribonuclease P from Escherichia coli and Thermus thermophilus.
We compared cleavage efficiencies of mono-molecular and bipartite model RNAs as substrates for RNase P RNAs (M1 RNAs) and holoenzymes from E. coli and Thermus thermophilus, an extreme thermophilic eubacterium. Acceptor stem and T arm of pre-tRNA substrates are essential recognition elements for both enzymes. Impairing coaxial stacking of acceptor and T stems and omitting the T loop led to reduc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 54 18 شماره
صفحات -
تاریخ انتشار 2015